
Partitioning Sparse Rectangular Matrices for

Parallel Computations of Ax and AT
v
?

Bruce Hendrickson1 and Tamara G. Kolda2

1 Parallel Computing Sciences Department, Sandia National Labs,
Albuquerque, NM 87185{1110. bah@cs.sandia.gov.

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831{6367. kolda@msr.epm.ornl.gov.

Abstract. This paper addresses the problem of partitioning the nonze-
ros of sparse nonsymmetric and nonsquare matrices in order to e�ciently
compute parallel matrix-vector and matrix-transpose-vector multiplies.
Our goal is to balance the work per processor while keeping communica-
tions costs low. Although the symmetric partitioning problem has been
well-studied, the nonsymmetric and rectangular cases have received scant
attention. We show that this problem can be described as a partitioning
problem on a bipartite graph. We then describe how to use (modi�ed)
multilevel methods to partition these graphs and how to implement the
matrix multiplies in parallel to take advantage of the partitioning. Fi-
nally, we compare various multilevel and other partitioning strategies on
matrices from di�erent applications. The multilevel methods are shown
to be best.

1 Introduction

In many parallel algorithms, we require numerous matrix-vector and matrix-
transpose-vector multiplies with sparse matrices. Partitioning is used to dis-
tribute the nonzeros of the sparse matrix so that the work per processor is
balanced and the communication costs are low. Of particular interest to us is
the case when the matrix is square nonsymmetric or rectangular; we refer to
both cases as rectangular. Speci�cally, given a rectangular matrix A, we �nd
permutations P and Q so that the nonzero values of PAQ are clustered in the
diagonal blocks as illustrated in Figure 1. As we will show in Sect. 2, a nearly
block diagonal structure helps to reduce the memory requirements and commu-
nication cost in the matrix-vector products. Furthermore, we require the block
rows and block columns to each have about the same number of nonzeros; this
corresponds to balancing the
oating point operations per processor.

The need to perform repeated matrix-vector multiplies with the same rect-
angular matrix (and its transpose) arises in numerous linear algebra algorithms.

? This work was supported by the Applied Mathematical Sciences Research Program,
O�ce of Energy Research, U.S. Department of Energy, under contracts DE-AC05-
96OR22464 and DE-AL04-94AL85000 with Lockheed Martin Energy Research Cor-
poration.

Fig. 1. Before and after partitioning.

Important examples include applying QMR to nonsymmetric linear systems [3],
using LSQR to solve least squares problems [14], solving the normal equations
that arise in interior point methods using CG [15], or computing the truncated
SVD of hypertext matrices in information retrieval [2].

Although matrix partitioning has been well-studied in the symmetric case,
little work has been done in the rectangular case [13]. The symmetric problem
is commonly phrased in terms of partitioning graphs. We will show that the
rectangular problem can be conveniently phrased in terms of partitioning bipar-
tite graphs. We will extend the work of Berry, Hendrickson, and Raghavan [2]
and Kolda [13] for partitioning rectangular matrices by incorporating multilevel
schemes which are already popular in the symmetric case [1, 8, 10, 11]. Multi-
level methods, described in Sect. 3, have three phases: coarsening, base-level
partitioning, and un-coarsening with re�nement. In Sect. 4, we will compare
the (modi�ed) multilevel methods with various re�nements to non-multilevel
methods on a set of test matrices.

Further information can be found in Hendrickson and Kolda [6], an extension
of this research.

2 Parallel Multiplies

We propose the following parallel implementations for the matrix-vector and
matrix-transpose-vector multiplications. Suppose that we have p processors. We
partition A into a block p� p matrix,

A =

2
6664

A11 A12 � � � A1p

A21 A22 � � � A2p

...
...

. . .
...

Ap1 Ap2 � � � App

3
7775 ;

so that most of the nonzeros are in the diagonal blocks. Here block (i; j) is of
size mi � nj where

P
imi = m and

P
j nj = n.

Matrix-Vector Multiply (Block Row). We do the following on each processor to
compute y = Ax:

1. Let i denote the processor id. This processor owns the ith block row of A,
that is,

�
Ai1 Ai2 � � � Aip

�
, and xi, the ith block of x of length ni.

2. Send a message to each processor j 6= i for which Aji 6= 0. This message
contains only those elements of xi corresponding to nonzero columns in Aji.

3. While waiting to receive messages, the processor computes the contribution

from the diagonal matrix block, y
(i)
i = Aiixi. The blockAii, while still sparse,

may be dense enough to improve data locality.

4. Then, for each j 6= i such that Aij is nonzero, a message is received containing
a sparse vector �xj that only has the elements of xj corresponding to nonzero

columns in Aij , and y
(j)
i = Aij �xi, is computed. (We assume that processor i

already knows which elements to expect from processor j.)

5. Finally, the ith block of the product y is computed via the sum yi =
P

j y
(j)
i .

Block yi is of size mi.

Matrix-Transpose-Vector Multiply (Block Row). To compute z = AT v, each
processor does the following:

1. Let i denote the processor id. This processor owns vi, the ith block of v of
size mi, and the ith block row of A.

2. Compute z
(i)
j = AT

ijvi, for each j 6= i for which Aij 6= 0. Observe that the

number of nonzeros in z
(i)
j is equal to the number of nonzero rows in AT

ij ,

i.e., the number of nonzero columns in Aij . Send the nonzero1 elements of

z
(i)
j to processor j.

3. While waiting to receive messages from the other processors, compute the

diagonal block contribution z
(i)
i = AT

iivi.

4. From each processor j such that Aji 6= 0, receive �z
(j)
i which contains only the

nonzero elements of z
(j)
i . (Again, we assume that processor i already knows

which elements to expect from processor j.)

5. Compute the ith component of the product, zi = z
(i)
i +

P
j 6=i �z

(j)
i . Block zi

is of size ni.

Block column algorithms are analogous to those given for the block row
layout. Observe that sparse o�-diagonal blocks result in less message volume.
See Hendrickson and Kolda [6] for more details on these algorithms.

1 Here we mean any elements that are guaranteed to be zero by the structure of Aij .
Elements that are zero by cancellation are still communicated.

3 Multilevel Partitioning of Rectangular Matrices

A rectangular m � n matrix A = [aij] corresponds to an undirected bipartite
graph G = (R;C;E) with R = fr1; : : : ; rmg, C = fc1; : : : ; cng and (ri; cj) 2 E

i� aij 6= 0 (see Fig. 2). The weight of each row vertex is the number of nonzeros in

1

2

3

4

5

1 2 3
r1

r2

r3

r4

r5

c1

c2

c3

Fig. 2. Bipartite graph representation of a matrix.

the corresponding row; the column vertices are unweighted. The weight of each
edge is initially set to one. We now wish to divide R [C into p sets in such a
way that the total row weight per set is balanced, and the total number of edges
crossing between sets is kept small. The �rst criterion ensures load balance in the
multiplies, while the third limits the communication volume. This partitioning
problem is known to be NP-hard [4]. We will present methods to divide into
p = 2 partitions. In order to divide into p = 2k sets, we recursively partition the
block diagonals.

We will focus on multilevel methods to approximately solve this problem.
This type of method has three phases. In phase 1, the graph is successively
coarsened by merging vertex pairs. Row vertices merge only with row vertices,
likewise for column vertices. The rows are merged as follows. A random eligible
row is chosen, say i. It is merged with a randomly chosen, unmerged row node,
say i0, that is a path of length two away. That is, two row nodes can be merged
if they are currently unmerged and some column has nonzero values in both row
locations. (If no such row node exists, the i is ineligible for merging.) We choose
another eligible row at random and continue the process until all row vertices
have had the chance to be paired. We pair the column vertices via an analogous
procedure. The vertex weight of a node in the coarse graph is the sum of the
weights of its constituent pair. There is an edge between two nodes in the coarse
graph if any pair of their constituent vertices had an edge. The weight of the edge
is the sum of all the edge weights of the edges between the constituent vertices.
The coarse graph maintains the bipartite structure of the original graph and has
about half as many vertices as the original graph. To further coarsen, we repeat
the process until we have reached the desired number of vertices.

In phase 2, the coarsest graph is partitioned randomly.

Lastly in phase 3, the graph is successively un-coarsened and the partition
is re�ned each step. As we un-coarsen, the two constituent nodes of a merged
vertex are initially in the same partition as the merged vertex. In the course
of the re�nement, one or both may switch partitions. We have experimented
with three di�erent re�nement strategies. The �rst re�nement option is a mod-
i�ed version of Kernighan-Lin [12] for bipartite graphs. This method moves one
node at a time looking for a better partition. The second option is to use the
alternating partitioning method presented in [13]. We start with a �xed column
permutation that may be the result of some previous ordering. Given that the
column partitioning is �xed, we must compute the best row partition. We then
�x that row partition and compute the best column partition. We continue alter-
natingly �xing one partition and computing the other until the overall partition
can no longer be improved. The �nal re�nement option is to use alternating
partitioning followed by Kernighan-Lin; this can be thought of as a rough re-
�nement followed by a �ne re�nement. Note that in addition to being used as
components of a multilevel approach, these re�nement algorithms can improve
a partition produced by any algorithm. More details on these methods can be
found in Hendrickson and Kolda [6].

In Sect. 4, we will also give results for the Spectral method for bipartite
graphs, described originally in Berry, et al. [2] and also in Hendrickson and
Kolda [6].

4 Experimental Results

The software we are using is a modi�cation of the Chaco package (written in C)
developed by Hendrickson and Leland [7] for multilevel partitioning of symmetric
matrices. The timings for the partitioning were done on a 300 MHz Pentium II.

We will give results for four matrices from di�erent disciplines, each split
over 16 processors. The alternating partitioning (AP) method starts with a ran-
dom ordering; it has no multilevel component. The spectral method (Spectral)
uses a multilevel Rayleigh Quotient Iteration/Symmlq eigensolver [1, 7]. The
three multilevel methods di�er in the re�nement algorithm they apply after
each uncoarsening step. ML-AP applies alternating partitioning, ML-KL uses
Kernighan-Lin, and ML-AP+KL combines the two by applying �rst alternating
partitioning and then Kernighan-Lin. We always coarsen to one hundred coarse
vertices in the multilevel methods. In every case, the rows (or columns) of the
matrix are divided among processors in such a way that there is less than 10%
di�erence in the number of matrix nonzeros owned by di�erent processors.

For all the tables, the format is as follows. Edge Cuts is the number of edges
in the bipartite graph that are cut by the given partition. Part Time is the time
(in seconds) to compute the partition. Tot Msgs and Tot Vol are, respectively,
the total number of messages and total message volume for computing either
Ax or AT v. Max Msg and Max Vol are, respectively, the maximum number and

maximum volume of messages handled by a single processor in the computation
of Ax or AT v, incoming or outgoing.

Table 1 shows the result of applying various partitioning methods to the
17; 758� 17; 758 nonsymmetric memplus matrix2 with 99,147 nonzeros for solv-
ing linear systems. Compared to a partitioning based upon the natural ordering,
the number of edge cuts is substantially reduced by each method except Spec-
tral, and the multilevel methods reduce the value by a factor of three. The
overall communication volume is reduced by more than a factor of three by the
multilevel methods, but not by the AP or Spectral methods. Only the Spectral
method is expensive in terms of partition computation time, and that is be-
cause it had trouble converging. In fact, the Spectral method has problems in
the next two examples as well. Note that the total number of messages increase
because the message passing is more distributed; i.e., observe that the maximum
message volume handled by a single processor is greatly reduced by the various
reorderings.

Table 1. Communication pattern for row-based partitioning of the memplus matrix on
16 processors.

Method Edge Part Total Total Max Max

Cuts Time Msgs Vol Msgs Vol

Natural 69381 0.26 74 30501 15 12826

AP 49535 1.66 216 28864 15 3152

ML-KL 18138 4.28 240 8991 15 877

ML-AP 20273 4.20 239 11040 15 1073

ML-AP+KL 18762 5.54 239 10128 15 1022

Spectral 59481 84.66 137 31709 15 7312

The 28; 254 � 17; 284 pig-large matrix [5, 9] with 75,018 nonzeros arises
from a least squares problems. The multilevel methods (see Table 2) are best,
reducing the edge cuts, total message volume, and the processor message volume
by factors of more than three in every case.

The 6; 071� 12; 230 dfl001 matrix3 with 35,632 nonzeros arises from linear
programming. Here we partition the matrix column-wise since the matrix has
some dense rows; this should yield a better partitioning. In Table 3, we see that
again the number of edge cuts, the total message volume, and the maximum
single processor volume are substantially reduced.

Results for the 1; 853� 625 man1 matrix with 3,706 nonzeros are presented
in Table 4. This is a hypertext matrix as described in Berry, et al. [2], and we
want to compute a low-rank SVD for it. In this case, the number of messages
is actually reduced, as was the total volume, and maximum processor volume.

2 Available from MatrixMarket (http://math.nist.gov/MatrixMarket/).
3 Available from NETLIB (http://www.netlib.org/lp).

Table 2. Communication pattern for row-based partitioning of the pig-large matrix
on 16 processors.

Method Edge Part Total Total Max Max

Cuts Time Msgs Vol Msgs Vol

Natural 55332 0.26 78 23203 12 4740

AP 24016 2.44 229 14069 15 1335

ML-KL 11775 4.26 216 3796 15 494

ML-AP 14966 3.53 214 6694 15 1100

ML-AP+KL 12202 6.52 216 3632 15 416

Spectral 11726 193.14 187 6475 15 810

Table 3. Communication pattern for column-based partitioning of the dfl001 matrix
on 16 processors.

Method Edge Part Total Total Max Max

Cuts Time Msgs Vol Msgs Vol

Natural 33194 0.10 140 24636 15 8468

AP 14361 1.02 239 13804 15 1342

ML-KL 8663 2.54 238 7951 15 749

ML-AP 10388 1.80 239 9569 15 855

ML-AP+KL 8653 3.30 234 7919 15 742

Spectral 17067 44.15 228 13383 15 2056

Here we �nally have a case where the Spectral method does better than all the
others, although it still takes the longest time to compute. Figure 1 shows the
original matrix and the result of the ML-AP+KL partitioning for 8 processors.

5 Conclusions

We presented (modi�ed) multilevel methods for partitioning sparse nonsymmet-
ric and nonsquare matrices. We described how this can be used to implement
e�cient parallel matrix-vector and matrix-transpose-vector multiplies with re-
duced communication. We tested our methods on four matrices from four di�er-
ent mathematical applications. Our results show that partitioning clearly reduces
the communication volume that multilevel partitioning with alternating parti-
tioning plus Kernighan-Lin re�nement is generally the best of the partitioners.

Acknowledgements

Thanks to Iain Du� and Michael Saunders for help in �nding large matrices to
work with. Also thanks to Michele Benzi for many helpful conversations.

Table 4. Communication pattern for column-based partitioning of the dfl001 matrix
on 16 processors.

Method Edge Part Total Total Max Max

Cuts Time Msgs Vol Msgs Vol

Natural 1497 0.01 236 1168 15 93

AP 1002 0.05 180 685 15 68

ML-KL 1045 0.13 137 556 15 103

ML-AP 811 0.08 151 521 14 62

ML-AP+KL 618 0.15 141 417 13 49

Spectral 556 1.75 119 306 12 39

References

1. Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience, 6:101{117, 1994.

2. Michael W. Berry, Bruce Hendrickson, and Padma Raghavan. Sparse matrix re-
ordering schemes for browsing hypertext. In James Renegar, Michael Shub, and
Steve Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lec-
tures in Applied Mathematics, pages 99{122. American Mathematical Society, 1996.

3. Roland W. Freund and No�el M. Nachtigal. QMR: A quasi-minimal residual method
for non-Hermitian linear systems. Numer. Math., 60:315{339, 1991.

4. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

5. Markus Hegland. Description and use of animal breeding data for large least
squares problems. Technical Report TR-PA-93-50, CERFACS, Toulouse, France,
1993.

6. Bruce Hendrickson and Tamara G. Kolda. Partitioning nonsquare and nonsym-
metric matrices for parallel processing. Technical Memorandum TM-13657, Oak
Ridge National Laboratory, Oak Ridge, TN 37831, 1998. Submitted to SIAM J.
Scienti�c Computing.

7. Bruce Hendrickson and Robert Leland. The Chaco user's guide, version 2.0. Tech-
nical Report SAND95-2344, Sandia Natl. Lab., Albuquerque, NM, 87185, 1995.

8. Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proc. Supercomputing '95. ACM, 1995.

9. A. Hofer. Sch�atzung von Zuchtwerten feldgepr�ufter Schweine mit einem
Mehrmerkmals-Tiermodell. PhD thesis, ETH-Zurich, 1990. Cited in [5].

10. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report 95-035, Dept. Computer Science,
Univ. Minnesota, Minneapolis, MN 55455, 1995.

11. George Karypis and Vipin Kumar. Parallel multilevel graph partitioning. Technical
Report 95-036, Dept. Computer Science, Univ. Minnesota, Minneapolis, MN 55455,
1995.

12. B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning
graphs. Bell System Technical J., 1970.

13. Tamara G. Kolda. Partitioning sparse rectangular matrices for parallel processing.
In Proc. 5th Intl. Symposium on Solving Irregularly Structured Problems in Parallel
(Irregular '98), to appear.

14. Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse
linear equations and sparse least squares. ACM Trans. Mathematical Software,
8:43{71, 1982.

15. Weichung Wang and Dianne P. O'Leary. Adaptive use of iterative methods in
interior point methods for linear programming. Technical Report CS-TR-3560,
Dept. Computer Science, Univ. Maryland, College Park, MD 20742, 1995.

